Tuning a distributed feedback THz quantum cascade laser with an external microcavity

Lukas Mahler

NEST CNR-INFM and Scuola Normale Superiore, Pisa
People involved

Alessandro Tredicucci, Fabio Beltram
NEST CNR-INFM and Scuola Normale Superiore, Pisa

Diederik Wiersma,
LENS, Università di Firenze

Christoph Walther, Jérôme Faist
Institute for Quantum Electronics, ETH Zürich

Harvey Beere, David Ritchie
Cavendish Laboratory, University of Cambridge
Distributed feedback resonator for THz QCL

- Double metal waveguide
- Periodic slits in the top metallization

→ Very big coupling constant
t = \frac{\text{n}\text{eff}}{(c \cdot \alpha_w)} \approx 6\text{ps} \text{ for } \alpha_w = 20\text{cm}^{-1}
With a reflecting top boundary

Tuning range of up to 10 % could be possible
Move the mirror with a piezo drive
Anti-crossing
Grating design

Strong vertical emission required

Force the laser to the radiative band-edge
Device design
Fabricated device
Experimental setup
Anti-crossing

- Strong intensity modulation
- Tuning only 1-2 GHz
- Increase vertical emission!
Quasi-periodic Structures

- Non-periodic
- Deterministic

Fibonacci sequence: \(S_{j+1} = \{S_{j-1}, S_j\} \) with \(S_0 = \{B\} \) and \(S_1 = \{A\} \)

\(S_7 = \{ABABAABABAABABA\} \).

- For metallic gratings: Replace the A,B interface with a slit in the metal
First devices

Quasi-period 5.45 µm, slit 1.8 µm
Slit-width dependence

Frequency (THz)
Grating-dependent emission

Emission scales with the quasi-period
Lasing on the lower band-edge
Light-current characteristics

Power (mW)

Current (A)

18K

60K

80K
Far-field
Bragg peaks

Grating wavevector (k/k_0)

Periodic

Quasi-periodic

$$k_{\text{Guided mode}} = nk_{\text{Grating}} - k_{\text{Guided mode}}$$
Far-field wavevectors

\[\sin(\theta) k_{\text{Radiation}} = |k_{\text{Grating}} - k_{\text{Guided mode}}| \]
Tuning of a Fibonacci laser

Frequency (THz)

≈ 30 GHz

Mirror distance (um)
Experiment

\[\approx 6 \text{ GHz} \]
Conclusions and Outlook

• It is very difficult to obtain laser oscillation on the radiative bandedge
• A Fibonacci laser has enough surface emission for a proof of concept
• Drastic improvements required to become useful

• What other geometries could be possible?
• Can we find a way to couple two lasers sufficiently?